Leveraging Expert Consistency to Improve Algorithmic Decision Support

24 Jan 2021  ·  Maria De-Arteaga, Vincent Jeanselme, Artur Dubrawski, Alexandra Chouldechova ·

Machine learning (ML) is increasingly being used to support high-stakes decisions. However, there is frequently a construct gap: a gap between the construct of interest to the decision-making task and what is captured in proxies used as labels to train ML models. As a result, ML models may fail to capture important dimensions of decision criteria, hampering their utility for decision support. Thus, an essential step in the design of ML systems for decision support is selecting a target label among available proxies. In this work, we explore the use of historical expert decisions as a rich -- yet also imperfect -- source of information that can be combined with observed outcomes to narrow the construct gap. We argue that managers and system designers may be interested in learning from experts in instances where they exhibit consistency with each other, while learning from observed outcomes otherwise. We develop a methodology to enable this goal using information that is commonly available in organizational information systems. This involves two core steps. First, we propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert. Second, we introduce a label amalgamation approach that allows ML models to simultaneously learn from expert decisions and observed outcomes. Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap, yielding better predictive performance than learning from either observed outcomes or expert decisions alone.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here