Local contact inhibition leads to universal principles of cell population growth

Cancer cell population dynamics often exhibit remarkably replicable, universal laws despite their underlying heterogeneity. Mechanistic explanations of universal cell population growth remain partly unresolved to this day, whereby population feedback between the microscopic and mesoscopic configurations can lead to macroscopic growth laws. We here present a unification under density-dependent birth events via contact inhibition. We consider five classical tumor growth laws: exponential, generalized logistic, Gompertz, radial growth, and fractal growth, which can be seen as manifestations of a single microscopic model. Our theory is substantiated by agent based simulations and can explain growth curve differences in experimental data from in vitro cancer cell population growth. Thus, our framework offers a possible explanation for the large number of mean-field laws that can adequately capture seemingly unrelated cancer or microbial growth dynamics.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here