Localization of Coordinated Cyber-Physical Attacks in Power Grids Using Moving Target Defense and Deep Learning

25 Jul 2022  ·  Yexiang Chen, Subhash Lakshminarayana, Fei Teng ·

As one of the most sophisticated attacks against power grids, coordinated cyber-physical attacks (CCPAs) damage the power grid's physical infrastructure and use a simultaneous cyber attack to mask its effect. This work proposes a novel approach to detect such attacks and identify the location of the line outages (due to the physical attack). The proposed approach consists of three parts. Firstly, moving target defense (MTD) is applied to expose the physical attack by actively perturbing transmission line reactance via distributed flexible AC transmission system (D-FACTS) devices. MTD invalidates the attackers' knowledge required to mask their physical attack. Secondly, convolution neural networks (CNNs) are applied to localize line outage position from the compromised measurements. Finally, model agnostic meta-learning (MAML) is used to accelerate the training speed of CNN following the topology reconfigurations (due to MTD) and reduce the data/retraining time requirements. Simulations are carried out using IEEE test systems. The experimental results demonstrate that the proposed approach can effectively localize line outages in stealthy CCPAs.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods