Finite-Time Logarithmic Bayes Regret Upper Bounds

We derive the first finite-time logarithmic Bayes regret upper bounds for Bayesian bandits. In a multi-armed bandit, we obtain $O(c_\Delta \log n)$ and $O(c_h \log^2 n)$ upper bounds for an upper confidence bound algorithm, where $c_h$ and $c_\Delta$ are constants depending on the prior distribution and the gaps of bandit instances sampled from it, respectively. The latter bound asymptotically matches the lower bound of Lai (1987). Our proofs are a major technical departure from prior works, while being simple and general. To show the generality of our techniques, we apply them to linear bandits. Our results provide insights on the value of prior in the Bayesian setting, both in the objective and as a side information given to the learner. They significantly improve upon existing $\tilde{O}(\sqrt{n})$ bounds, which have become standard in the literature despite the logarithmic lower bound of Lai (1987).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here