Long-time prediction of nonlinear parametrized dynamical systems by deep learning-based ROMs

Deep learning-based reduced order models (DL-ROMs) have been recently proposed to overcome common limitations shared by conventional ROMs - built, e.g., through proper orthogonal decomposition (POD) - when applied to nonlinear time-dependent parametrized PDEs. Although extremely efficient at testing time, when evaluating the PDE solution for any new testing-parameter instance, DL-ROMs require an expensive training stage. To avoid this latter, a prior dimensionality reduction through POD, and a multi-fidelity pretraining stage, are introduced, yielding the POD-DL-ROM framework, which allows to solve time-dependent PDEs even faster than in real-time. Equipped with LSTM networks, the resulting POD-LSTM-ROMs better grasp the time evolution of the PDE system, ultimately allowing long-term prediction of complex systems’ evolution, with respect to the training window, for unseen input parameter values.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods