Magnetic fields of young solar twins

10 May 2016  ·  Rosén L., Kochukhov O., Hackman T., Lehtinen J. ·

The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and, the past of the Sun and the solar system... This is also important for the atmospheric evolution of the inner planets, Earth in particular. We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100Myr to 250Myr while there is no significant age dependence of the mean magnetic field strength for stars with ages 250-650Myr. The spread in the mean field strength between different stars is comparable to the scatter between different observations of individual stars. The meridional field component has the weakest strength compared to the radial and azimuthal field components in 15 out of the 16 magnetic maps. It turns out that 89-97% of the magnetic field energy is contained in l=1-3. There is also no clear trend with age and distribution of field energy into poloidal/toroidal and axisymmetric/non-axisymmetric components within the sample. The two oldest stars in this study do show a twice as strong octupole component compared to the quadrupole component. This is only seen in one out of 13 maps of the younger stars. One star, chi1 Ori displays two field polarity switches during almost 5 years of observations suggesting a magnetic cycle length of either 2, 6 or 8 years. read more

PDF Abstract
No code implementations yet. Submit your code now


Solar and Stellar Astrophysics