Maximal Margin Distribution Support Vector Regression with coupled Constraints-based Convex Optimization

5 May 2019  ·  Gaoyang Li, Jinyu Yang, Chunguo Wu, Qin Ma ·

Support vector regression (SVR) is one of the most popular machine learning algorithms aiming to generate the optimal regression curve through maximizing the minimal margin of selected training samples, i.e., support vectors. Recent researchers reveal that maximizing the margin distribution of whole training dataset rather than the minimal margin of a few support vectors, is prone to achieve better generalization performance. However, the margin distribution support vector regression machines suffer difficulties resulted from solving a non-convex quadratic optimization, compared to the margin distribution strategy for support vector classification, This paper firstly proposes a maximal margin distribution model for SVR(MMD-SVR), then implementing coupled constrain factor to convert the non-convex quadratic optimization to a convex problem with linear constrains, which enhance the training feasibility and efficiency for SVR to derived from maximizing the margin distribution. The theoretical and empirical analysis illustrates the superiority of MMD-SVR. In addition, numerical experiments show that MMD-SVR could significantly improve the accuracy of prediction and generate more smooth regression curve with better generalization compared with the classic SVR.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here