Measuring Visibility using Atmospheric Transmission and Digital Surface Model

20 May 2015  ·  Jean-Philippe Andreu, Stefan Mayer, Karlheinz Gutjahr, Harald Ganster ·

Reliable and exact assessment of visibility is essential for safe air traffic. In order to overcome the drawbacks of the currently subjective reports from human observers, we present an approach to automatically derive visibility measures by means of image processing. It first exploits image based estimation of the atmospheric transmission describing the portion of the light that is not scattered by atmospheric phenomena (e.g., haze, fog, smoke) and reaches the camera. Once the atmospheric transmission is estimated, a 3D representation of the vicinity (digital surface model: DMS) is used to compute depth measurements for the haze-free pixels and then derive a global visibility estimation for the airport. Results on foggy images demonstrate the validity of the proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here