Mem-elements based Neuromorphic Hardware for Neural Network Application

5 Mar 2024  ·  Ankur Singh ·

The thesis investigates the utilization of memristive and memcapacitive crossbar arrays in low-power machine learning accelerators, offering a comprehensive co-design framework for deep neural networks (DNN). The model, implemented through a hybrid Python and PyTorch approach, accounts for various non-idealities, achieving exceptional training accuracies of 90.02% and 91.03% for the CIFAR-10 dataset with memristive and memcapacitive crossbar arrays on an 8-layer VGG network. Additionally, the thesis introduces a novel approach to emulate meminductor devices using Operational Transconductance Amplifiers (OTA) and capacitors, showcasing adjustable behavior. Transistor-level simulations in 180 nm CMOS technology, operating at 60 MHz, demonstrate the proposed meminductor emulator's viability with a power consumption of 0.337 mW. The design is further validated in neuromorphic circuits and CNN accelerators, achieving training and testing accuracies of 91.04% and 88.82%, respectively. Notably, the exclusive use of MOS transistors ensures the feasibility of monolithic IC fabrication. This research significantly contributes to the exploration of advanced hardware solutions for efficient and high-performance machine-learning applications.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods