Minimax Dynamics of Optimally Balanced Spiking Networks of Excitatory and Inhibitory Neurons

NeurIPS 2020  ·  Qianyi Li, Cengiz Pehlevan ·

Excitation-inhibition (E-I) balance is ubiquitously observed in the cortex. Recent studies suggest an intriguing link between balance on fast timescales, tight balance, and efficient information coding with spikes. We further this connection by taking a principled approach to optimal balanced networks of excitatory (E) and inhibitory (I) neurons. By deriving E-I spiking neural networks from greedy spike-based optimizations of constrained minimax objectives, we show that tight balance arises from correcting for deviations from the minimax optima. We predict specific neuron firing rates in the network by solving the minimax problem, going beyond statistical theories of balanced networks. Finally, we design minimax objectives for reconstruction of an input signal, associative memory, and storage of manifold attractors, and derive from them E-I networks that perform the computation. Overall, we present a novel normative modeling approach for spiking E-I networks, going beyond the widely-used energy minimizing networks that violate Dale's law. Our networks can be used to model cortical circuits and computations.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here