Mobile Human Ad Hoc Networks: A Communication Engineering Viewpoint on Interhuman Airborne Pathogen Transmission

2 Nov 2020  ·  Fatih Gulec, Baris Atakan, Falko Dressler ·

A number of transmission models for airborne pathogens transmission, as required to understand airborne infectious diseases such as COVID-19, have been proposed independently from each other, at different scales, and by researchers from various disciplines. We propose a communication engineering approach that blends different disciplines such as epidemiology, biology, medicine, and fluid dynamics. The aim is to present a unified framework using communication engineering, and to highlight future research directions for modeling the spread of infectious diseases through airborne transmission. We introduce the concept of mobile human ad hoc networks (MoHANETs), which exploits the similarity of airborne transmission-driven human groups with mobile ad hoc networks and uses molecular communication as the enabling paradigm. In the MoHANET architecture, a layered structure is employed where the infectious human emitting pathogen-laden droplets and the exposed human to these droplets are considered as the transmitter and receiver, respectively. Our proof-of-concept results, which we validated using empirical COVID-19 data, clearly demonstrate the ability of our MoHANET architecture to predict the dynamics of infectious diseases by considering the propagation of pathogen-laden droplets, their reception and mobility of humans.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here