Paper

MUTE-SLAM: Real-Time Neural SLAM with Multiple Tri-Plane Hash Representations

We introduce MUTE-SLAM, a real-time neural RGB-D SLAM system employing multiple tri-plane hash-encodings for efficient scene representation. MUTE-SLAM effectively tracks camera positions and incrementally builds a scalable multi-map representation for both small and large indoor environments. It dynamically allocates sub-maps for newly observed local regions, enabling constraint-free mapping without prior scene information. Unlike traditional grid-based methods, we use three orthogonal axis-aligned planes for hash-encoding scene properties, significantly reducing hash collisions and the number of trainable parameters. This hybrid approach not only speeds up convergence but also enhances the fidelity of surface reconstruction. Furthermore, our optimization strategy concurrently optimizes all sub-maps intersecting with the current camera frustum, ensuring global consistency. Extensive testing on both real-world and synthetic datasets has shown that MUTE-SLAM delivers state-of-the-art surface reconstruction quality and competitive tracking performance across diverse indoor settings. The code will be made public upon acceptance of the paper.

Results in Papers With Code
(↓ scroll down to see all results)