Naturalistic Driver Intention and Path Prediction using Recurrent Neural Networks

26 Jul 2018  ·  Alex Zyner, Stewart Worrall, Eduardo Nebot ·

Understanding the intentions of drivers at intersections is a critical component for autonomous vehicles. Urban intersections that do not have traffic signals are a common epicentre of highly variable vehicle movement and interactions. We present a method for predicting driver intent at urban intersections through multi-modal trajectory prediction with uncertainty. Our method is based on recurrent neural networks combined with a mixture density network output layer. To consolidate the multi-modal nature of the output probability distribution, we introduce a clustering algorithm that extracts the set of possible paths that exist in the prediction output, and ranks them according to likelihood. To verify the method's performance and generalizability, we present a real-world dataset that consists of over 23,000 vehicles traversing five different intersections, collected using a vehicle mounted Lidar based tracking system. An array of metrics is used to demonstrate the performance of the model against several baselines.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here