Paper

Network Vector: Distributed Representations of Networks with Global Context

We propose a neural embedding algorithm called Network Vector, which learns distributed representations of nodes and the entire networks simultaneously. By embedding networks in a low-dimensional space, the algorithm allows us to compare networks in terms of structural similarity and to solve outstanding predictive problems. Unlike alternative approaches that focus on node level features, we learn a continuous global vector that captures each node's global context by maximizing the predictive likelihood of random walk paths in the network. Our algorithm is scalable to real world graphs with many nodes. We evaluate our algorithm on datasets from diverse domains, and compare it with state-of-the-art techniques in node classification, role discovery and concept analogy tasks. The empirical results show the effectiveness and the efficiency of our algorithm.

Results in Papers With Code
(↓ scroll down to see all results)