Neural tuning and representational geometry

20 Apr 2021  ·  Nikolaus Kriegeskorte, Xue-Xin Wei ·

A central goal of neuroscience is to understand the representations formed by brain activity patterns and their connection to behavior. The classical approach is to investigate how individual neurons encode the stimuli and how their tuning determines the fidelity of the neural representation. Tuning analyses often use the Fisher information to characterize the sensitivity of neural responses to small changes of the stimulus. In recent decades, measurements of large populations of neurons have motivated a complementary approach, which focuses on the information available to linear decoders. The decodable information is captured by the geometry of the representational patterns in the multivariate response space. Here we review neural tuning and representational geometry with the goal of clarifying the relationship between them. The tuning induces the geometry, but different sets of tuned neurons can induce the same geometry. The geometry determines the Fisher information, the mutual information, and the behavioral performance of an ideal observer in a range of psychophysical tasks. We argue that future studies can benefit from considering both tuning and geometry to understand neural codes and reveal the connections between stimulus, brain activity, and behavior.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here