Neuroscience-inspired perception-action in robotics: applying active inference for state estimation, control and self-perception

10 May 2021  ·  Pablo Lanillos, Marcel van Gerven ·

Unlike robots, humans learn, adapt and perceive their bodies by interacting with the world. Discovering how the brain represents the body and generates actions is of major importance for robotics and artificial intelligence. Here we discuss how neuroscience findings open up opportunities to improve current estimation and control algorithms in robotics. In particular, how active inference, a mathematical formulation of how the brain resists a natural tendency to disorder, provides a unified recipe to potentially solve some of the major challenges in robotics, such as adaptation, robustness, flexibility, generalization and safe interaction. This paper summarizes some experiments and lessons learned from developing such a computational model on real embodied platforms, i.e., humanoid and industrial robots. Finally, we showcase the limitations and challenges that we are still facing to give robots human-like perception

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here