New Tight Relaxations of Rank Minimization for Multi-Task Learning

9 Dec 2021  ·  Wei Chang, Feiping Nie, Rong Wang, Xuelong Li ·

Multi-task learning has been observed by many researchers, which supposes that different tasks can share a low-rank common yet latent subspace. It means learning multiple tasks jointly is better than learning them independently. In this paper, we propose two novel multi-task learning formulations based on two regularization terms, which can learn the optimal shared latent subspace by minimizing the exactly $k$ minimal singular values. The proposed regularization terms are the more tight approximations of rank minimization than trace norm. But it's an NP-hard problem to solve the exact rank minimization problem. Therefore, we design a novel re-weighted based iterative strategy to solve our models, which can tactically handle the exact rank minimization problem by setting a large penalizing parameter. Experimental results on benchmark datasets demonstrate that our methods can correctly recover the low-rank structure shared across tasks, and outperform related multi-task learning methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here