Neural Ordinary Differential Equation Control of Dynamics on Graphs

17 Jun 2020  ·  Thomas Asikis, Lucas Böttcher, Nino Antulov-Fantulin ·

We study the ability of neural networks to calculate feedback control signals that steer trajectories of continuous time non-linear dynamical systems on graphs, which we represent with neural ordinary differential equations (neural ODEs). To do so, we present a neural-ODE control (NODEC) framework and find that it can learn feedback control signals that drive graph dynamical systems into desired target states. While we use loss functions that do not constrain the control energy, our results show, in accordance with related work, that NODEC produces low energy control signals. Finally, we evaluate the performance and versatility of NODEC against well-known feedback controllers and deep reinforcement learning. We use NODEC to generate feedback controls for systems of more than one thousand coupled, non-linear ODEs that represent epidemic processes and coupled oscillators.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here