On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine

17 Oct 2021  ·  Richa Singh ·

Inspired by recent progress in machine learning, a data-driven fault diagnosis and isolation (FDI) scheme is explicitly developed for failure in the fuel supply system and sensor measurements of the laboratory gas turbine system. A passive approach of fault diagnosis is implemented where a model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained. Towards the end, a comparative study is presented for well-known classification techniques, namely Support vector classifier, linear discriminant analysis, K-neighbor, and decision trees. Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here