Addressing Gap between Training Data and Deployed Environment by On-Device Learning

2 Mar 2022  ·  Kazuki Sunaga, Masaaki Kondo, Hiroki Matsutani ·

The accuracy of tinyML applications is often affected by various environmental factors, such as noises, location/calibration of sensors, and time-related changes. This article introduces a neural network based on-device learning (ODL) approach to address this issue by retraining in deployed environments. Our approach relies on semi-supervised sequential training of multiple neural networks tailored for low-end edge devices. This article introduces its algorithm and implementation on wireless sensor nodes consisting of a Raspberry Pi Pico and low-power wireless module. Experiments using vibration patterns of rotating machines demonstrate that retraining by ODL improves anomaly detection accuracy compared with a prediction-only deep neural network in a noisy environment. The results also show that the ODL approach can save communication cost and energy consumption for battery-powered Internet of Things devices.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here