Online Policy Learning and Inference by Matrix Completion

26 Apr 2024  ·  Congyuan Duan, Jingyang Li, Dong Xia ·

Making online decisions can be challenging when features are sparse and orthogonal to historical ones, especially when the optimal policy is learned through collaborative filtering. We formulate the problem as a matrix completion bandit (MCB), where the expected reward under each arm is characterized by an unknown low-rank matrix. The $\epsilon$-greedy bandit and the online gradient descent algorithm are explored. Policy learning and regret performance are studied under a specific schedule for exploration probabilities and step sizes. A faster decaying exploration probability yields smaller regret but learns the optimal policy less accurately. We investigate an online debiasing method based on inverse propensity weighting (IPW) and a general framework for online policy inference. The IPW-based estimators are asymptotically normal under mild arm-optimality conditions. Numerical simulations corroborate our theoretical findings. Our methods are applied to the San Francisco parking pricing project data, revealing intriguing discoveries and outperforming the benchmark policy.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here