Optimal Energy Scheduling and Sensitivity Analysis for Integrated Power-Water-Heat Systems

1 Feb 2021  ·  Sidun Fang, Chenxu Wang, Yashen Lin, Changhong Zhao ·

The conventionally independent power, water, and heating networks are becoming more tightly connected, which motivates their joint optimal energy scheduling to improve the overall efficiency of an integrated energy system. However, such a joint optimization is known as a challenging problem with complex network constraints and couplings of electric, hydraulic, and thermal models that are nonlinear and nonconvex. We formulate an optimal power-water-heat flow (OPWHF) problem and develop a computationally efficient heuristic to solve it. The proposed heuristic decomposes OPWHF into subproblems, which are iteratively solved via convex relaxation and convex-concave procedure. Simulation results validate that the proposed framework can improve operational flexibility and social welfare of the integrated system, wherein the water and heating networks respond as virtual energy storage to time-varying energy prices and solar photovoltaic generation. Moreover, we perform sensitivity analysis to compare two modes of heating network control: by flow rate and by temperature. Our results reveal that the latter is more effective for heating networks with a wider space of pipeline parameters.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here