Multichannel Orthogonal Transform-Based Perceptron Layers for Efficient ResNets

13 Mar 2023  ·  Hongyi Pan, Emadeldeen Hamdan, Xin Zhu, Salih Atici, Ahmet Enis Cetin ·

In this paper, we propose a set of transform-based neural network layers as an alternative to the $3\times3$ Conv2D layers in Convolutional Neural Networks (CNNs). The proposed layers can be implemented based on orthogonal transforms such as the Discrete Cosine Transform (DCT), Hadamard transform (HT), and biorthogonal Block Wavelet Transform (BWT). Furthermore, by taking advantage of the convolution theorems, convolutional filtering operations are performed in the transform domain using element-wise multiplications. Trainable soft-thresholding layers, that remove noise in the transform domain, bring nonlinearity to the transform domain layers. Compared to the Conv2D layer, which is spatial-agnostic and channel-specific, the proposed layers are location-specific and channel-specific. Moreover, these proposed layers reduce the number of parameters and multiplications significantly while improving the accuracy results of regular ResNets on the ImageNet-1K classification task. Furthermore, they can be inserted with a batch normalization layer before the global average pooling layer in the conventional ResNets as an additional layer to improve classification accuracy.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods