Particle acceleration in a nearby galaxy cluster pair: the role of cluster dynamics

20 Aug 2019  ·  Botteon A., Cassano R., Eckert D., Brunetti G., Dallacasa D., Shimwell T. W., van Weeren R. J., Gastaldello F., Bonafede A., Brüggen M., Bîrzan L., Clavico S., Cuciti V., de Gasperin F., De Grandi S., Ettori S., Ghizzardi S., Rossetti M., Röttgering H. J. A., Sereno M. ·

Diffuse radio emission associated with the intra-cluster medium (ICM) is observed in a number of merging galaxy clusters. It is currently believed that in mergers a fraction of the kinetic energy is channeled into non-thermal components, such as turbulence, cosmic rays and magnetic fields, that may lead to the formation of giant synchrotron sources in the ICM... Studying merging galaxy clusters in different evolutionary phases is fundamental to understanding the origin of radio emission in the ICM. We observed the nearby galaxy cluster pair RXC J1825.3+3026 ($z\sim0.065$) and CIZA J1824.1+3029 ($z\sim0.071$) at 120-168 MHz with the LOw Frequency ARray (LOFAR) and made use of a deep (240 ks) XMM-Newton dataset to study the non-thermal and thermal properties of the system. RXC J1825.3+3026 is in a complex dynamical state, with a primary on-going merger in the E-W direction and a secondary later stage merger with a group of galaxies in the SW, while CIZA J1824.1+3029 is dynamically relaxed. These two clusters are in a pre-merger phase. We report the discovery of a Mpc-scale radio halo with a low surface brightness extension in RXC J1825.3+3026 that follows the X-ray emission from the cluster center to the remnant of a galaxy group in the SW. This is among the least massive systems and the faintest giant radio halo known to date. Contrary to this, no diffuse radio emission is observed in CIZA J1824.1+3029 nor in the region between the pre-merger cluster pair. The power spectra of the X-ray surface brightness fluctuations of RXC J1825.3+3026 and CIZA J1824.1+3029 are in agreement with the findings for clusters exhibiting a radio halo and the ones where no radio emission has been detected, respectively. We provide quantitative support to the idea that cluster mergers play a crucial role in the generation of non-thermal components in the ICM. read more

PDF Abstract
No code implementations yet. Submit your code now


Cosmology and Nongalactic Astrophysics Astrophysics of Galaxies High Energy Astrophysical Phenomena