Phase Transitions in Approximate Ranking

30 Nov 2017  ·  Chao Gao ·

We study the problem of approximate ranking from observations of pairwise interactions. The goal is to estimate the underlying ranks of $n$ objects from data through interactions of comparison or collaboration. Under a general framework of approximate ranking models, we characterize the exact optimal statistical error rates of estimating the underlying ranks. We discover important phase transition boundaries of the optimal error rates. Depending on the value of the signal-to-noise ratio (SNR) parameter, the optimal rate, as a function of SNR, is either trivial, polynomial, exponential or zero. The four corresponding regimes thus have completely different error behaviors. To the best of our knowledge, this phenomenon, especially the phase transition between the polynomial and the exponential rates, has not been discovered before.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here