Paper

PixelRNN: In-pixel Recurrent Neural Networks for End-to-end-optimized Perception with Neural Sensors

Conventional image sensors digitize high-resolution images at fast frame rates, producing a large amount of data that needs to be transmitted off the sensor for further processing. This is challenging for perception systems operating on edge devices, because communication is power inefficient and induces latency. Fueled by innovations in stacked image sensor fabrication, emerging sensor-processors offer programmability and minimal processing capabilities directly on the sensor. We exploit these capabilities by developing an efficient recurrent neural network architecture, PixelRNN, that encodes spatio-temporal features on the sensor using purely binary operations. PixelRNN reduces the amount of data to be transmitted off the sensor by a factor of 64x compared to conventional systems while offering competitive accuracy for hand gesture recognition and lip reading tasks. We experimentally validate PixelRNN using a prototype implementation on the SCAMP-5 sensor-processor platform.

Results in Papers With Code
(↓ scroll down to see all results)