Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated Split Learning

2 Sep 2022  ·  Benshun Yin, Zhiyong Chen, Meixia Tao ·

As an edge intelligence algorithm for multi-device collaborative training, federated learning (FL) can reduce the communication burden but increase the computing load of wireless devices. In contrast, split learning (SL) can reduce the computing load of devices by using model splitting and assignment, but increase the communication burden to transmit intermediate results. In this paper, to exploit the advantages of FL and SL, we propose a hybrid federated split learning (HFSL) framework in wireless networks, which combines the multi-worker parallel update of FL and flexible splitting of SL. To reduce the computational idleness in model splitting, we design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed. Aiming to obtain the trade-off between the training time and energy consumption, we optimize the splitting decision, the bandwidth and computing resource allocation. The optimization problem is multi-objective, and we thus propose a predictive generative adversarial network (GAN)-powered multi-objective optimization algorithm to obtain the Pareto front of the problem. Experimental results show that the proposed algorithm outperforms others in finding Pareto optimal solutions, and the solutions of the proposed HFSL dominate the solution of FL.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here