Prospects for exploring New Physics in Coherent Elastic Neutrino-Nucleus Scattering

4 May 2018  ·  Julien Billard, Joseph Johnston, Bradley J. Kavanagh ·

Coherent Elastic Neutrino-Nucleus Scattering (CE$\nu$NS) is a Standard Model process that, although predicted for decades, has only been detected recently by the COHERENT collaboration. Now that CE$\nu$NS has been discovered, it provides a new probe for physics beyond the Standard Model. We study the potential to probe New Physics with CE$\nu$NS through the use of low temperature bolometers at a reactor source. We consider contributions to CE$\nu$NS due to a neutrino magnetic moment (NMM), Non-Standard Interactions (NSI) that may or may not change flavor, and simplified models containing a massive scalar or vector mediator. Targets consisting of Ge, Zn, Si, CaWO$_4$, and Al$_2$O$_3$ are examined. We show that by reaching a percentage-level precision measurement on the CE$\nu$NS energy spectrum down to $\mathcal{O}(10)$ eV, forthcoming experiments will improve by two orders of magnitude both the CE$\nu$NS-based NMM limit and the search for new massive mediators. Additionally, we demonstrate that such dedicated low-threshold CE$\nu$NS experiments will lead to unprecedented constraints on NSI parameters (particularly when multiple targets are combined) which will have major implications for the global neutrino physics program.

PDF Abstract

Categories


High Energy Physics - Phenomenology High Energy Physics - Experiment