Proximal Symmetric Non-negative Latent Factor Analysis: A Novel Approach to Highly-Accurate Representation of Undirected Weighted Networks

6 Jun 2023  ·  Yurong Zhong, Zhe Xie, Weiling Li, Xin Luo ·

An Undirected Weighted Network (UWN) is commonly found in big data-related applications. Note that such a network's information connected with its nodes, and edges can be expressed as a Symmetric, High-Dimensional and Incomplete (SHDI) matrix. However, existing models fail in either modeling its intrinsic symmetry or low-data density, resulting in low model scalability or representation learning ability. For addressing this issue, a Proximal Symmetric Nonnegative Latent-factor-analysis (PSNL) model is proposed. It incorporates a proximal term into symmetry-aware and data density-oriented objective function for high representation accuracy. Then an adaptive Alternating Direction Method of Multipliers (ADMM)-based learning scheme is implemented through a Tree-structured of Parzen Estimators (TPE) method for high computational efficiency. Empirical studies on four UWNs demonstrate that PSNL achieves higher accuracy gain than state-of-the-art models, as well as highly competitive computational efficiency.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods