Quantifying constraints determining independent activation on NMDA receptors mediated currents from evoked and spontaneous synaptic transmission at an individual synapse

8 Oct 2022  ·  Sat byul Seo, Jianzhong Su ·

A synapse acts on neural transmission through a chemical process called synapses fusion between pre-synaptic and post-synaptic terminals. Presynaptic terminals release neurotransmitters either in response to action potential or spontaneously independent of presynaptic activity. However, it is still unclear the mechanism of evoked and spontaneous neuro-transmission that activate on postsynaptic terminals. To address this question, we examined the possibility that spontaneous and evoked neurotransmissions using mathematical simulations. We aimed to address the biophysical constraints that may determine independent activation on N-methyl-D-asparate (NMDA) receptor mediated currents in response to evoked and spontaneous glutamate molecules releases. In order to identify the spatial relation between spontaneous and evoked glutamate release, we considered quantitative factors, such as size of synapses, inhomogeneity of diffusion mobility, geometry of synaptic cleft, and release rate of neurotransmitter. Simulation results showed that as a synaptic size is smaller and if the cleft space is more cohesive in the peripheral area than the centre area, then there is high possibility of having crosstalk of two signals released from center and edge. When a synaptic size is larger, the cleft space is more affinity in the central area than the external area, and if the geometry of fusion has a narrower space, then those produce more chances of independence of two modes of currents released from center and edge. The computed results match well with existing experimental findings and serve as a road map for further exploration to identify independence of evoked and spontaneous releases.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods