Quantum reinforcement learning in continuous action space

19 Dec 2020  ·  Shaojun Wu, Shan Jin, Dingding Wen, Donghong Han, Xiaoting Wang ·

Quantum reinforcement learning (QRL) is one promising algorithm proposed for near-term quantum devices. Early QRL proposals are effective at solving problems in discrete action space, but often suffer from the curse of dimensionality in the continuous domain due to discretization. To address this problem, we propose a quantum Deep Deterministic Policy Gradient algorithm that is efficient at solving both classical and quantum sequential decision problems in the continuous domain. As an application, our method can solve the quantum state-generation problem in a single shot: it only requires a one-shot optimization to generate a model that outputs the desired control sequence for arbitrary target state. In comparison, the standard quantum control method requires optimizing for each target state. Moreover, our method can also be used to physically reconstruct an unknown quantum state.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here