Realized volatility and parametric estimation of Heston SDEs

14 Jun 2017  ·  Robert Azencott, Peng Ren, Ilya Timofeyev ·

We present a detailed analysis of \emph{observable} moments based parameter estimators for the Heston SDEs jointly driving the rate of returns $R_t$ and the squared volatilities $V_t$. Since volatilities are not directly observable, our parameter estimators are constructed from empirical moments of realized volatilities $Y_t$, which are of course observable. Realized volatilities are computed over sliding windows of size $\varepsilon$, partitioned into $J(\varepsilon)$ intervals. We establish criteria for the joint selection of $J(\varepsilon)$ and of the sub-sampling frequency of return rates data. We obtain explicit bounds for the $L^q$ speed of convergence of realized volatilities to true volatilities as $\varepsilon \to 0$. In turn, these bounds provide also $L^q$ speeds of convergence of our observable estimators for the parameters of the Heston volatility SDE. Our theoretical analysis is supplemented by extensive numerical simulations of joint Heston SDEs to investigate the actual performances of our moments based parameter estimators. Our results provide practical guidelines for adequately fitting Heston SDEs parameters to observed stock prices series.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here