Reduced-order Koopman modeling and predictive control of nonlinear processes

31 Mar 2024  ·  Xuewen Zhang, Minghao Han, Xunyuan Yin ·

In this paper, we propose an efficient data-driven predictive control approach for general nonlinear processes based on a reduced-order Koopman operator. A Kalman-based sparse identification of nonlinear dynamics method is employed to select lifting functions for Koopman identification. The selected lifting functions are used to project the original nonlinear state-space into a higher-dimensional linear function space, in which Koopman-based linear models can be constructed for the underlying nonlinear process. To curb the significant increase in the dimensionality of the resulting full-order Koopman models caused by the use of lifting functions, we propose a reduced-order Koopman modeling approach based on proper orthogonal decomposition. A computationally efficient linear robust predictive control scheme is established based on the reduced-order Koopman model. A case study on a benchmark chemical process is conducted to illustrate the effectiveness of the proposed method. Comprehensive comparisons are conducted to demonstrate the advantage of the proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here