Paper

Reinforcement Neighborhood Selection for Unsupervised Graph Anomaly Detection

Unsupervised graph anomaly detection is crucial for various practical applications as it aims to identify anomalies in a graph that exhibit rare patterns deviating significantly from the majority of nodes. Recent advancements have utilized Graph Neural Networks (GNNs) to learn high-quality node representations for anomaly detection by aggregating information from neighborhoods. However, the presence of anomalies may render the observed neighborhood unreliable and result in misleading information aggregation for node representation learning. Selecting the proper neighborhood is critical for graph anomaly detection but also challenging due to the absence of anomaly-oriented guidance and the interdependence with representation learning. To address these issues, we utilize the advantages of reinforcement learning in adaptively learning in complex environments and propose a novel method that incorporates Reinforcement neighborhood selection for unsupervised graph ANomaly Detection (RAND). RAND begins by enriching the candidate neighbor pool of the given central node with multiple types of indirect neighbors. Next, RAND designs a tailored reinforcement anomaly evaluation module to assess the reliability and reward of considering the given neighbor. Finally, RAND selects the most reliable subset of neighbors based on these rewards and introduces an anomaly-aware aggregator to amplify messages from reliable neighbors while diminishing messages from unreliable ones. Extensive experiments on both three synthetic and two real-world datasets demonstrate that RAND outperforms the state-of-the-art methods.

Results in Papers With Code
(↓ scroll down to see all results)