Robot Localization and Navigation through Predictive Processing using LiDAR

9 Sep 2021  ·  Daniel Burghardt, Pablo Lanillos ·

Knowing the position of the robot in the world is crucial for navigation. Nowadays, Bayesian filters, such as Kalman and particle-based, are standard approaches in mobile robotics. Recently, end-to-end learning has allowed for scaling-up to high-dimensional inputs and improved generalization. However, there are still limitations to providing reliable laser navigation. Here we show a proof-of-concept of the predictive processing-inspired approach to perception applied for localization and navigation using laser sensors, without the need for odometry. We learn the generative model of the laser through self-supervised learning and perform both online state-estimation and navigation through stochastic gradient descent on the variational free-energy bound. We evaluated the algorithm on a mobile robot (TIAGo Base) with a laser sensor (SICK) in Gazebo. Results showed improved state-estimation performance when comparing to a state-of-the-art particle filter in the absence of odometry. Furthermore, conversely to standard Bayesian estimation approaches our method also enables the robot to navigate when providing the desired goal by inferring the actions that minimize the prediction error.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here