Robustly overfitting latents for flexible neural image compression

31 Jan 2024  ·  Yura Perugachi-Diaz, Arwin Gansekoele, Sandjai Bhulai ·

Neural image compression has made a great deal of progress. State-of-the-art models are based on variational autoencoders and are outperforming classical models. Neural compression models learn to encode an image into a quantized latent representation that can be efficiently sent to the decoder, which decodes the quantized latent into a reconstructed image. While these models have proven successful in practice, they lead to sub-optimal results due to imperfect optimization and limitations in the encoder and decoder capacity. Recent work shows how to use stochastic Gumbel annealing (SGA) to refine the latents of pre-trained neural image compression models. We extend this idea by introducing SGA+, which contains three different methods that build upon SGA. We show how our method improves the overall compression performance in terms of the R-D trade-off, compared to its predecessors. Additionally, we show how refinement of the latents with our best-performing method improves the compression performance on both the Tecnick and CLIC dataset. Our method is deployed for a pre-trained hyperprior and for a more flexible model. Further, we give a detailed analysis of our proposed methods and show that they are less sensitive to hyperparameter choices. Finally, we show how each method can be extended to three- instead of two-class rounding.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here