RAR-U-Net: a Residual Encoder to Attention Decoder by Residual Connections Framework for Spine Segmentation under Noisy Labels

27 Sep 2020  ·  Ziyang Wang, Zhengdong Zhang, Irina Voiculescu ·

Segmentation algorithms for medical images are widely studied for various clinical and research purposes. In this paper, we propose a new and efficient method for medical image segmentation under noisy labels. The method operates under a deep learning paradigm, incorporating four novel contributions. Firstly, a residual interconnection is explored in different scale encoders to transfer gradient information efficiently. Secondly, four copy-and-crop connections are replaced by residual-block-based concatenation to alleviate the disparity between encoders and decoders. Thirdly, convolutional attention modules for feature refinement are studied on all scale decoders. Finally, an adaptive denoising learning strategy (ADL) is introduced into the training process to avoid too much influence from the noisy labels. Experimental results are illustrated on a publicly available benchmark database of spine CTs. Our proposed method achieves competitive performance against other state-of-the-art methods over a variety of different evaluation measures.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here