Safe Connectivity Maintenance in Underactuated Multi-Agent Networks for Dynamic Oceanic Environments

4 Jul 2023  ·  Nicolas Hoischen, Marius Wiggert, Claire J. Tomlin ·

Autonomous Multi-Agent Systems are increasingly being deployed in environments where winds and ocean currents can exert a significant influence on their dynamics. Recent work has developed powerful control policies for single agents that can leverage flows to achieve their objectives in dynamic environments. However, in the context of multi-agent systems, these flows can cause agents to collide or drift apart and lose direct inter-agent communications, especially when agents have low propulsion capabilities. To address these challenges, we propose a Hierarchical Multi-Agent Control approach that allows arbitrary single agent performance policies that are unaware of other agents to be used in multi-agent systems, while ensuring safe operation. We first develop a safety controller solely dedicated to avoiding collisions and maintaining inter-agent communication. Subsequently, we design a low-interference safe interaction (LISIC) policy that trades-off the performance policy and the safety controller to ensure safe and optimal operation. Specifically, when the agents are at an appropriate distance, LISIC prioritizes the performance policy, while smoothly increasing the safety controller when necessary. We prove that under mild assumptions on the flows experienced by the agents our approach can guarantee safety. Additionally, we demonstrate the effectiveness of our method in realistic settings through an extensive empirical analysis with underactuated Autonomous Surface Vehicles (ASV) operating in dynamical ocean currents where the assumptions do not always hold.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here