Safe Control Design through Risk-Tunable Control Barrier Functions

19 Sep 2023  ·  Vipul K. Sharma, S. Sivaranjani ·

We consider the problem of designing controllers to guarantee safety in a class of nonlinear systems under uncertainties in the system dynamics and/or the environment. We define a class of uncertain control barrier functions (CBFs), and formulate the safe control design problem as a chance-constrained optimization problem with uncertain CBF constraints. We leverage the scenario approach for chance constrained optimization to develop a risk-tunable control design that provably guarantees the satisfaction of CBF safety constraints up to a user-defined probabilistic risk bound, and provides a trade-off between the sample complexity and risk tolerance. We demonstrate the performance of this approach through simulations on a quadcopter navigation problem with obstacle avoidance constraints.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here