Safety-Critical Learning of Robot Control with Temporal Logic Specifications

7 Sep 2021  ·  Mingyu Cai, Cristian-Ioan Vasile ·

Reinforcement learning (RL) is a promising approach. However, success is limited to real-world applications, because ensuring safe exploration and facilitating adequate exploitation is a challenge for controlling robotic systems with unknown models and measurement uncertainties. The learning problem becomes even more difficult for complex tasks over continuous state-action. In this paper, we propose a learning-based robotic control framework consisting of several aspects: (1) we leverage Linear Temporal Logic (LTL) to express complex tasks over infinite horizons that are translated to a novel automaton structure; (2) we detail an innovative reward scheme for LTL satisfaction with a probabilistic guarantee. Then, by applying a reward shaping technique, we develop a modular policy-gradient architecture exploiting the benefits of the automaton structure to decompose overall tasks and enhance the performance of learned controllers; (3) by incorporating Gaussian Processes (GPs) to estimate the uncertain dynamic systems, we synthesize a model-based safe exploration during the learning process using Exponential Control Barrier Functions (ECBFs) that generalize systems with high-order relative degrees; (4) to further improve the efficiency of exploration, we utilize the properties of LTL automata and ECBFs to propose a safe guiding process. Finally, we demonstrate the effectiveness of the framework via several robotic environments. We show an ECBF-based modular deep RL algorithm that achieves near-perfect success rates and safety guarding with high probability confidence during training.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here