Sample-Based Conservative Bias Linear Power Flow Approximations

15 Apr 2024  ·  Paprapee Buason, Sidhant Misra, Daniel K. Molzahn ·

The power flow equations are central to many problems in power system planning, analysis, and control. However, their inherent non-linearity and non-convexity present substantial challenges during problem-solving processes, especially for optimization problems. Accordingly, linear approximations are commonly employed to streamline computations, although this can often entail compromises in accuracy and feasibility. This paper proposes an approach termed Conservative Bias Linear Approximations (CBLA) for addressing these limitations. By minimizing approximation errors across a specified operating range while incorporating conservativeness (over- or under-estimating quantities of interest), CBLA strikes a balance between accuracy and tractability by maintaining linear constraints. By allowing users to design loss functions tailored to the specific approximated function, the bias approximation approach significantly enhances approximation accuracy. We illustrate the effectiveness of our proposed approach through several test cases.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here