Self-triggered Consensus of Multi-agent Systems with Quantized Relative State Measurements

6 Oct 2022  ·  Masashi Wakaiki ·

This paper addresses the consensus problem of first-order continuous-time multi-agent systems over undirected graphs. Each agent samples relative state measurements in a self-triggered fashion and transmits the sum of the measurements to its neighbors. Moreover, we use finite-level dynamic quantizers and apply the zooming-in technique. The proposed joint design method for quantization and self-triggered sampling achieves asymptotic consensus, and inter-event times are strictly positive. Sampling times are determined explicitly with iterative procedures including the computation of the Lambert $W$-function. A simulation example is provided to illustrate the effectiveness of the proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here