Paper

Semi-Dense Visual Odometry for RGB-D Cameras Using Approximate Nearest Neighbour Fields

This paper presents a robust and efficient semi-dense visual odometry solution for RGB-D cameras. The core of our method is a 2D-3D ICP pipeline which estimates the pose of the sensor by registering the projection of a 3D semi-dense map of the reference frame with the 2D semi-dense region extracted in the current frame. The processing is speeded up by efficiently implemented approximate nearest neighbour fields under the Euclidean distance criterion, which permits the use of compact Gauss-Newton updates in the optimization. The registration is formulated as a maximum a posterior problem to deal with outliers and sensor noises, and consequently the equivalent weighted least squares problem is solved by iteratively reweighted least squares method. A variety of robust weight functions are tested and the optimum is determined based on the characteristics of the sensor model. Extensive evaluation on publicly available RGB-D datasets shows that the proposed method predominantly outperforms existing state-of-the-art methods.

Results in Papers With Code
(↓ scroll down to see all results)