Sequential Graph Neural Networks for Source Code Vulnerability Identification

23 May 2023  ·  Ammar Ahmed, Anwar Said, Mudassir Shabbir, Xenofon Koutsoukos ·

Vulnerability identification constitutes a task of high importance for cyber security. It is quite helpful for locating and fixing vulnerable functions in large applications. However, this task is rather challenging owing to the absence of reliable and adequately managed datasets and learning models. Existing solutions typically rely on human expertise to annotate datasets or specify features, which is prone to error. In addition, the learning models have a high rate of false positives. To bridge this gap, in this paper, we present a properly curated C/C++ source code vulnerability dataset, denoted as CVEFunctionGraphEmbeddings (CVEFGE), to aid in developing models. CVEFGE is automatically crawled from the CVE database, which contains authentic and publicly disclosed source code vulnerabilities. We also propose a learning framework based on graph neural networks, denoted SEquential Graph Neural Network (SEGNN) for learning a large number of code semantic representations. SEGNN consists of a sequential learning module, graph convolution, pooling, and fully connected layers. Our evaluations on two datasets and four baseline methods in a graph classification setting demonstrate state-of-the-art results.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods