Short-Term Memory Through Persistent Activity: Evolution of Self-Stopping and Self-Sustaining Activity in Spiking Neural Networks

25 Nov 2014  ·  Julien Hubert, Takashi Ikegami ·

Memories in the brain are separated in two categories: short-term and long-term memories. Long-term memories remain for a lifetime, while short-term ones exist from a few milliseconds to a few minutes. Within short-term memory studies, there is debate about what neural structure could implement it. Indeed, mechanisms responsible for long-term memories appear inadequate for the task. Instead, it has been proposed that short-term memories could be sustained by the persistent activity of a group of neurons. In this work, we explore what topology could sustain short-term memories, not by designing a model from specific hypotheses, but through Darwinian evolution in order to obtain new insights into its implementation. We evolved 10 networks capable of retaining information for a fixed duration between 2 and 11s. Our main finding has been that the evolution naturally created two functional modules in the network: one which sustains the information containing primarily excitatory neurons, while the other, which is responsible for forgetting, was composed mainly of inhibitory neurons. This demonstrates how the balance between inhibition and excitation plays an important role in cognition.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here