Simulating short- and long-term evolutionary dynamics on rugged landscapes

12 May 2021  ·  Leonardo Trujillo, Paul Banse, Guillaume Beslon ·

We propose a minimal model to simulate long waiting times followed by evolutionary bursts on rugged landscapes. It combines point and inversions-like mutations as sources of genetic variation. The inversions are intended to simulate one of the main chromosomal rearrangements. Using the well-known family of NK fitness landscapes, we simulate random adaptive walks, i.e. successive mutational events constrained to incremental fitness selection. We report the emergence of different time scales: a short-term dynamics mainly driven by point mutations, followed by a long-term (stasis-like) waiting period until a new mutation arises. This new mutation is an inversion which can trigger a burst of successive point mutations, and then drives the system to new short-term increasing-fitness period. We analyse the effect of genes epistatic interactions on the evolutionary time scales. We suggest that the present model mimics the process of evolutionary innovation and punctuated equilibrium.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here