Slow expanders invade by forming dented fronts in microbial colonies

9 Aug 2021  ·  Hyunseok Lee, Jeff Gore, Kirill S. Korolev ·

Most organisms grow in space, whether they are viruses spreading within a host tissue or invasive species colonizing a new continent. Evolution typically selects for higher expansion rates during spatial growth, but it has been suggested that slower expanders can take over under certain conditions. Here, we report an experimental observation of such population dynamics. We demonstrate that the slower mutants win not only when the two types are intermixed at the front but also when they are spatially segregated into sectors. The latter was thought to be impossible because previous studies focused exclusively on the global competitions mediated by expansion velocities but overlooked the local competitions at sector boundaries. We developed a theory of sector geometry that accounts for both local and global competitions and describes all possible sector shapes. In particular, the theory predicted that a slower, but more competitive, mutant forms a dented V-shaped sector as it takes over the expansion front. Such sectors were indeed observed experimentally and their shapes matched up quantitatively with the theory. In simulations, we further explored several mechanism that could provide slow expanders with a local competitive advantage and showed that they are all well-described by our theory. Taken together, our results shed light on previously unexplored outcomes of spatial competition and establish a universal framework to understand evolutionary and ecological dynamics in expanding populations.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here