Solutions of Quadratic First-Order ODEs applied to Computer Vision Problems

11 Oct 2017  ·  David Casillas-Perez, Daniel Pizarro, Manuel Mazo, Adrien Bartoli ·

This article is a study about the existence and the uniqueness of solutions of a specific quadratic first-order ODE that frequently appears in multiple reconstruction problems. It is called the \emph{planar-perspective equation} due to the duality with the geometric problem of reconstruction of planar-perspective curves from their modulus. Solutions of the \emph{planar-perspective equation} are related with planar curves parametrized with perspective parametrization due to this geometric interpretation. The article proves the existence of only two local solutions to the \emph{initial value problem} with \emph{regular initial conditions} and a maximum of two analytic solutions with \emph{critical initial conditions}. The article also gives theorems to extend the local definition domain where the existence of both solutions are guaranteed. It introduces the \emph{maximal depth function} as a function that upper-bound all possible solutions of the \emph{planar-perspective equation} and contains all its possible \emph{critical points}. Finally, the article describes the \emph{maximal-depth solution problem} that consists of finding the solution of the referred equation that has maximum the depth and proves its uniqueness. It is an important problem as it does not need initial conditions to obtain the unique solution and its the frequent solution that practical algorithms of the state-of-the-art give.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here