Sparsity in long-time control of neural ODEs

26 Feb 2021  ·  Carlos Esteve-Yagüe, Borjan Geshkovski ·

We consider the neural ODE and optimal control perspective of supervised learning, with $\ell^1$-control penalties, where rather than only minimizing a final cost (the \emph{empirical risk}) for the state, we integrate this cost over the entire time horizon. We prove that any optimal control (for this cost) vanishes beyond some positive stopping time. When seen in the discrete-time context, this result entails an \emph{ordered} sparsity pattern for the parameters of the associated residual neural network: ordered in the sense that these parameters are all $0$ beyond a certain layer. Furthermore, we provide a polynomial stability estimate for the empirical risk with respect to the time horizon. This can be seen as a \emph{turnpike property}, for nonsmooth dynamics and functionals with $\ell^1$-penalties, and without any smallness assumptions on the data, both of which are new in the literature.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods