Spatially Scalable Compressed Image Sensing with Hybrid Transform and Inter-layer Prediction Model

4 Oct 2013  ·  Diego Valsesia, Enrico Magli ·

Compressive imaging is an emerging application of compressed sensing, devoted to acquisition, encoding and reconstruction of images using random projections as measurements. In this paper we propose a novel method to provide a scalable encoding of an image acquired by means of compressed sensing techniques. Two bit-streams are generated to provide two distinct quality levels: a low-resolution base layer and full-resolution enhancement layer. In the proposed method we exploit a fast preview of the image at the encoder in order to perform inter-layer prediction and encode the prediction residuals only. The proposed method successfully provides resolution and quality scalability with modest complexity and it provides gains in the quality of the reconstructed images with respect to separate encoding of the quality layers. Remarkably, we also show that the scheme can also provide significant gains with respect to a direct, non-scalable system, thus accomplishing two features at once: scalability and improved reconstruction performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here